Numerical mixed-integer optimal control and motorized traveling salesmen problems
نویسندگان
چکیده
A general approach for the numerical solution of hybrid, mixed-integer optimal control problems is presented. In an outer level iteration a branch-and-bound procedure is applied to search the entire feasible discrete variable space. An inner level iteration contains for each actual value of the discrete variable a continuous nonlinear optimal control problem with its nonlinear dynamics defined in multiple phases and phase transitions occuring at unknown switching points (events) which must be solved numerically subject to nonlinear constraints. For this purpose, a robust and efficient direct collocation method is employed that parameterizes both the continuous state and control variables and exploits the sparse structure in the resulting nonlinearly constrained optimization problems. The proposed approach is successfully applied to two new hybrid optimal control benchmark problems for a motorized traveling salesman and for a team of two cooperating, motorized salesmen. RÉSUMÉ: Cet article présente une méthode générale pour la solution numérique de problèmes hybrides de commande optimale. Dans l’ itération extérieure, une méthode de type “Branch and Bound” est appliquée pour explorer tout l’ espace admissible de variables discrètes. Dans l’itération intérieure des problèmes de commande optimale doivent être résolus pour chaque valeur des variables discrètes. La dynamique non-linéaire de ces problèmes de commande optimale est définie dans plusieurs phases et instants de commutation, elle est limitée par des inéquations non-linéaires. La méthode proposée est appliquée à deux nouveaux cas d’études portant sur la commande optimale d’un voyageur de commerce motorisé et d’une équipe faisant coopérer deux voyageurs de commerce motorisés.
منابع مشابه
Hybrid Optimal Control of Motorized Traveling Salesmen and Beyond
Numerical methods for optimal control of hybrid dynamical systems are considered where the discrete dynamics and the nonlinear continuous dynamics are tightly coupled. A decomposition approach for numerically solving general mixed-integer continuous optimal control problems (MIOCPs) is discussed. In the outer optimization loop a branch-and-bound binary tree search is used for the discrete varia...
متن کاملDecomposition of Mixed-Integer Optimal Control Problems Using Branch and Bound and Sparse Direct Collocation
A large class of optimal control problems for hybrid dynamic systems can be formulated as mixed-integer optimal control problems (MIOCPs). It is the intrinsic combinatorial complexity, in addition to the nonlinearity of the continuous, multi-phase optimal control problems that is largely responsible for the challenges in the theoretical and numerical solution of MIOCPs. We present a new decompo...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملGeneralized multiple depot traveling salesmen problem - Polyhedral study and exact algorithm
The generalized multiple depot traveling salesmen problem (GMDTSP) is a variant of the multiple depot traveling salesmen problem (MDTSP), where each salesman starts at a distinct depot, the targets are partitioned into clusters and at least one target in each cluster is visited by some salesman. The GMDTSP is an NP-hard problem as it generalizes the MDTSP and has practical applications in desig...
متن کامل